
Oscillations in intracellular signaling cascades

K.-H. Chiam*
Institute of High Performance Computing, 1 Science Park Road, Singapore 117528, Singapore

Gunaretnam Rajagopal
Bioinformatics Institute, 30 Biopolis Street, Singapore 138671, Singapore

�Received 12 December 2006; published 1 June 2007�

In this paper, we study the oscillatory dynamics of intracellular signaling cascades. We derive a reaction-
diffusion model of the mitogen-activated protein kinase cascade, and use it to show how oscillations of the
protein kinase concentrations can occur as a function of the depth of the cascade. We find that only cascades
with depths of three or more layers undergo oscillatory instabilities. In addition, the oscillatory instability is
spatially uniform. Thus, the oscillations synchronize the protein kinase concentrations and result in them being
uniformly distributed in the cytosol, despite the presence of protein kinase diffusion. Finally, we show how the
oscillations are perturbed when parallel cascades “crosstalk.” We find that the protein kinases in the down-
stream layers of the cascade are less perturbed than those in the upstream layers. In particular, cascades of three
layers are able to maintain the total power of the protein kinase activities at approximately the unperturbed
level. Taken together, our results suggest that only cascades of at least three layers can synchronize the
oscillations of protein kinases in the cytosol and operate in parallel in the presence of crosstalk without loss of
signaling fidelity.
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I. INTRODUCTION

Within a cell, various signaling pathways convert extra-
cellular stimuli into cellular responses by transducing signals
downstream from activated cell-surface receptors into the
nucleus. These signals are key to the proper regulation of the
physiology and development of living organisms. In recent
years, there has been an increase in the understanding of the
functioning of these signaling pathways brought about by
dramatic advances in experimental methodology in genomics
and molecular biology. Consequently, physicists have also
begun to build quantitative models of signaling pathways in
order to see if there are any “laws” governing the dynamics
of signaling pathways.

In this paper, we focus on a ubiquitous motif of signaling
pathways, the mitogen-activated protein kinase cascade �1�.
It is a highly conserved cascade of protein kinases that is
found in organisms as diverse as S. cerevisiae �yeast�, C.
elegans �nematode worm�, D. melanogaster �fly�, and mam-
mals. In addition, it is biologically versatile. Many cells pos-
sess several mitogen-activated protein kinase cascades acting
in parallel �such as ERK, JNK, and p38�. For example, in
yeast, the regulation of mating from the presence of phero-
mones, filamentation from the lack of nutrients, glycerol pro-
duction from high osmolarity, etc., are all conducted via a
mitogen-activated protein kinase cascade.

Many theoretical models of the mitogen-activated protein
kinase cascade have been previously developed. For ex-
ample, it is now known that the cascade functions as an
ultrasensitive switch �2�, in which none of the terminal pro-
tein kinases are activated until a certain threshold in the
stimulus is crossed, in which case almost all of the terminal

protein kinases become activated. It is also known that, in
the presence of positive feedback, the cascade functions like
a bistable “memory module” �3�, in which case a transient
stimulus is converted into an irreversible response. In the
presence of negative feedback, however, the cascade exhibits
transient activation �4�.

In this paper, we develop a model of the mitogen-
activated protein kinase cascade that includes negative feed-
back and protein kinase diffusion. Most if not all of the ex-
isting models of signaling pathways do not consider protein
kinase diffusion. Diffusion is important because the proteins
are located in an intracellular environment that is inhomoge-
neous and whose concentrations are not governed simply by
the empirical law of mass action �5�. Whether diffusion is a
good approximation or not depends on the time and spatial
scales involved. In the highly crowded environment within a
cell, one would expect the average time for a protein to dif-
fuse in the cytoplasm to be roughly �10 min. This is about
the time scale for signal propagation along the mitogen-
activated protein kinase cascade. The importance of protein
diffusion in the intracellular environment has also been pre-
viously highlighted in the literature. For example, Bhalla �6�
examined how diffusion and subcellular compartmentaliza-
tion influences the underlying signaling processes and gives
rise to a diversity of signaling outcomes which may include
washout of the signals, signal amplification, and conversion
of steady responses to transients. Elf and Ehrenberg �7,8�
adapted Monte Carlo techniques to efficiently sample trajec-
tories of reaction-diffusion master equations, and applied it
to understand the separation of bistable biochemical systems
into spatial domains of opposite phases. Metzler �9� looked
at how spatial fluctuations play a non-negligible part in cel-
lular genetic switching processes. We note that, like the other
authors, we do not take into account protein kinase degrada-
tion as this happens at a time scale much longer than that
required for signal propagation along the cascade.*Electronic address: chiamkh@mailaps.org
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The main result of this paper is that our reaction-diffusion
model will show that the cascade’s response can be oscilla-
tory, but only if the cascade is comprised of three or more
layers. While, to the best of our knowledge, there have been
no experiments that have observed oscillations in the
mitogen-activated protein kinase cascade, we believe that
our results will have applications in, for example, the pulsa-
tile release of drugs targeted at protein kinases �10,11� which
is postulated to improve pharmacodynamic and pharmacoki-
netic efficacy. In addition, there has also been a lot of recent
interest in biochemical oscillations in signaling pathways.
For example, there have been attempts to explain the dynam-
ics of the mammalian circadian clock �12�, the Hes1 system
whose temporal oscillations are associated with the forma-
tion of spatial patterns during development �13�, the p53-
Mdm2 feedback loop whose number of oscillations suppos-
edly encodes the extent of DNA damage �14�, the NF-�B
system whose oscillations have been postulated to regulate
the transcription of target genes for apoptosis and inflamma-
tion, etc. In fact, one can venture to postulate that oscillatory
phenomena in biological networks are ubiquitous.

In addition, we will also study the stability of these oscil-
lations when there is “crosstalk” between two parallel signal-
ing cascades. This is in line with the real situation when
many cascades are activated concurrently as the cell is sub-
ject to many input signals. In particular, we study what hap-
pens when a cascade whose protein kinases are oscillating is
subject to a stimulus that is itself oscillating. The source of
the oscillating stimulus is presumed to be a parallel cascade
whose protein kinases are oscillating and therefore modify
the stimulus.

This paper is organized as follows. In Sec. II, we derive
our reaction-diffusion model of the mitogen-activated protein
kinase cascade. In Sec. III, we perform a linear stability
analysis on this reaction-diffusion model and study how an
oscillatory instability may develop as a function of the depth
of the cascade and the various parameters characterizing the
biochemical kinetics of the cascade. Finally, in Sec. IV, we
present our conclusions.

II. METHODS

The mitogen-activated protein kinase cascade is a ubiqui-
tous motif that is comprised of three layers whereby the pro-
tein kinases in each layer are activated sequentially. First,
cell surface receptors that are activated by the extracellular
ligands activate intermediate transducers such as the Ras pro-
teins �belonging to the family of monomeric GTPases that
reside on the cellular membrane�. The Ras protein can be
considered to be the “input,” or stimulus, to the cascade. It
recruits and catalyzes the phosphorylation of the protein ki-
nase in the first layer of the cascade, called the mitogen-
activated protein kinase-kinase-kinase �MAPKKK�, into its
active configuration �MAPKKK*�. An example of the MAP-
KKK in the mammalian Ras signaling pathway is the Raf
kinase. Simultaneously, the active MAPKKK* is also being
dephosphorylated into the inactive state by the presence
of phosphatases. This simultaneous phosphorylation-
dephosphorylation cycle �15� is repeated for the next two

layers of the protein kinase cascade. Thus, the phosphory-
lated MAPKKK* in turn catalyzes the phosphorylation of the
protein kinase in the second layer of the cascade, the
mitogen-activated protein kinase-kinase �MAPKK�, into its
active configuration �MAPKK*�. An example of the
MAPKK in the mammalian Ras signaling is the MEK pro-
tein. Simultaneously, the active MAPKK* is also being de-
phosphorylated into the inactive state by the presence of
phosphatases. Finally, the phosphorylated MAPKK* cata-
lyzes the phosphorylation of the mitogen-activated protein
kinase �MAPK�, the protein kinase in the third layer of the
three-layer cascade, into its active configuration �MAPK*�.
An example of the MAPK in the mammalian Ras signaling
pathway is the ERK protein. Simultaneously, the active
MAPK* is also being dephosphorylated into the inactive
state by the presence of phosphatases.

The fully activated protein kinases, namely MAPKKK*,
MAPKK*, and MAPK*, dissociate from the cascade and dif-
fuse within the cytosol. In addition, the terminal activated
protein kinase MAPK* translocates into the nucleus and acts
on specific target genes, leading to the transcriptional control
of the expression of its target genes. While the exact physical
mechanism of the movement of the terminal activated pro-
tein kinase into the nucleus is not completely known, there
are evidence that the process occurs by diffusion �16�. In this
paper, we assume diffusion to be the only mechanism for
activated protein kinase mobility in the cytosol.

Many mitogen-activated protein kinase cascades also ex-
hibit negative feedback �17� to serve as a signal quenching
mechanism. For example, in mammalian cells, ERK �the
MAPK� provides a mechanism for switching off Ras signal-
ing �the stimulus� by acting as an allosteric inhibitor to the
activation of the guanine nucleotide exchange protein SOS,
which in turn catalyzes the conversion of the inactive Ras
�GDP-bound� into its active state �GTP-bound� �18,19�.

We thus model the mitogen-activated protein kinase cas-
cade as a reaction-diffusion model with the diffusion of the
protein kinases in the presence of a negative feedback loop.
The phosphorylation and dephosphorylation of the protein
kinases are assumed to be described by Michaelis-Menten
kinetics �20�. Thus, the rate of change of the activated pro-
tein kinase concentration at a particular layer in the cascade
is the difference between the rate of phosphorylation and the
rate of dephosphorylation. The negative feedback loop is
modeled as the allosteric inhibition �20� of the terminal ac-
tivated protein kinase on the activation of the upstream pro-
tein kinase. Details of these derivations are provided in the
Appendix.

We let ai denote the variables of the reaction-diffusion
model, namely the activity of the protein kinase of the ith
layer of the cascade, i.e., the ratio of the phosphorylated
protein kinase concentration to the total �both phosphory-
lated and unphosphorylated� protein kinase concentration in
the ith layer of the cascade. We assume that the cascade has
N layers, so that i=1, . . . ,N. We can then write down a set of
N coupled equations describing the rates of change of the N
protein kinase activities,
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�ai

�t
= �i� �iai−1�1 − ai�

��i + 1 − ai��1 + �i1�aN�
−

ai

�i + ai
� + �i

�2ai

�r2 ,

i = 1, . . . ,N . �1�

These equations are dimensionless. The dimensionless vari-
ables t and r denote time and space �i.e., distance away from
the membrane�, respectively. Space is assumed to be one
dimension in this paper, with r=0 corresponding to the cel-
lular membrane, and r=1 the nucleus.

The interpretations of the various dimensionless param-
eters in Eq. �1� are as follows. The �i’s are characteristic time
scales governing the chemical kinetics of the ith layer. In this
paper, we will assume that the �i’s are identical for all layers
and, without loss of generality, set them all equal to unity.

The �i’s denote the ratios of the maximum phosphoryla-
tion velocity of the ith layer to the maximum dephosphory-
lation velocity of the i layer. Qualitatively, large �small� val-
ues of �i’s represent high �low� ith layer protein kinase
activity. The product �iai−1 is identical to the V1 /V2 param-
eter in the analysis of Goldbeter and Koshland �15�. The
parameter a0 denotes the dimensionless concentration of the
stimulus to the cascade, i.e., the ratio of the input enzyme
concentration to the total protein kinase concentration in the
first layer. In this paper, we set a0=1 without loss of gener-
ality and let the parameter �1 reflect variations in the cascade
stimulus.

The �i’s �or �i’s� denote the ratio of the Michaelis con-
stant of the phosphorylation �or dephosphorylation� of the i
layer to the total ith layer protein kinase concentration, i.e.,
the degree of saturation of the active �or inactive� protein
kinases. In this paper, we will assume that all the protein
kinases are always saturated, i.e., that �i=�i	1 for i
=1, . . . ,N.

The symbol �i1 is the Kronecker delta symbol such that
�ij =1 when i= j but is zero otherwise. Its occurrence simply
means that the negative feedback loop acts from the Nth
layer to the first layer, but nowhere else in the other layers of
the cascade. The parameter � quantifies the strength of the
feedback; it is inversely proportional to the equilibrium con-
stant of the inhibitor-enzyme binding, such as the binding
between the ERK and Ras kinases. Thus, the larger the value
of �, the “stronger” the “strength” of the negative feedback
loop. A value of �=0 corresponds to a cascade with no nega-
tive feedback.

Finally, the �i’s are the dimensionless diffusion coeffi-
cients of the protein kinases. Typically, the protein kinases of
the various layers have approximately the same mass and
therefore approximately the same diffusion coefficients,
which works out to be on the order of unity in our dimen-
sionless units.

The boundaries r=0 and r=1 are assumed to be Neumann
boundaries, i.e., ��ai /�r�r=0,1=0 for i=1, . . . ,N. These bound-
ary conditions are chosen for illustrative purposes for this
paper. In practical models, the boundaries may be Dirichlet
or more general Robin boundaries.

Thus, given the boundary and initial conditions, a1�r , t
=0�= ¯ =aN�r , t=0�=0, where 0
r
1, we numerically in-
tegrate Eq. �1� for given values of the parameters to obtain
aN�r , t� for all space r and time t�0.

III. RESULTS

A. Oscillatory dynamics as a function of cascade depth

In this section, we show that oscillations in the protein
kinase activities, the ai’s, can only occur in cascades that
comprise three or more layers. We perform a linear stability
analysis on the reaction-diffusion model of Eq. �1�, and show
how the occurrence of an oscillatory instability depends on
the cascade depth. Here, we assume that the velocities and
Michaelis constants of every phosphorylation and dephos-
phorylation reactions in the cascade are identical. Thus, we
set �1= ¯ =�N	�, and �1= ¯ =�N=�1= ¯ =�N	�.

To carry out the linear stability analysis, we first solve for
the spatially uniform steady-state solutions ai

0 and then lin-
earize Eq. �1� about these solutions, ai=ai

0+�ai. Because all
the parameters that appear in Eq. �1� are constant in space,
we can use the single Fourier mode ansatz

�ai = �ai,q�t�exp�iqr�, i = 1, . . . ,N , �2�

where q is a wave number. Here, for simplicity of analysis,
we assume that the spatial domain is infinite so q will take
continuous values. Thus, the analysis of realistic models on a
spatially finite domain will yield slightly different results. We
can further write the time dependence as

�ai,q�t� = �ai,q
0 exp���q�t�, i = 1, . . . ,N �3�

with ��q� the growth rate, possibly complex, of the Fourier
mode �ai,q

0 at wave number q. We then examine ��q� as a
function of q. An oscillatory instability is present when
Re ��q��0 and Im ��q��0 for some range of q.

In Fig. 1, we plot the real part of the growth rate Re ��q�
vs the wave number q when N=3. We have chosen �=10
1 to denote a highly active cascade, i.e., one that will yield
protein kinase activities that are very close to unity, and �
=0.01	1 to denote that the protein kinases are saturated.
These values are chosen to approximately match the values
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FIG. 1. The real part of the growth rate Re ��q� vs the wave
number q for three values of the control parameter �=10,15,20,
with the other parameters set at �=10, �=0.01, and �=1. The
critical value �c for which the growth rate first becomes positive is
approximately 15. The maximal growth rate occurs at q=0. Al-
though not shown, Im ��q��0 when ���c and is independent of q.
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observed in experiments on the p42 cascade of Xenopus oo-
cytes �2�. We will also set the diffusion coefficients to �i
=1 for i=1, . . . ,N. We then vary the negative feedback
strength, �, as the control parameter, and observe that there
exists a critical value of �c
15 for which Re ��q� ap-
proaches zero. When ���c, Re ��q��0 for all q. When �
��c, Re ��q��0 for a range of q, with the maximal growth
rate at q=0. Also, although not shown, for ���c, Im ��q� is
also positive. Thus, the N=3 cascade’s dynamics is unstable
to an oscillatory instability if ���c, and this results in the
protein kinase activities becoming periodic in time. The
range �c�15 corresponds to the equilibrium constant of the
ERK-Ras allosteric binding being less than approximately
20 nM.

Since the maximal growth rate occurs at q=0, the protein
kinase activities are uniform in space �21�. This spatial uni-
formity means that there are no gradients �22� nor waves
�both standing and traveling� of protein kinase activities
throughout the cytosol. A question that is frequently asked in
the context of biochemical oscillations is that of synchroni-
zation. In this case, one can ask how do the different spatial
regions of a single cell ensure that the protein kinase concen-
trations in the different spatial regions oscillate in phase. Are
there synchronization mechanisms for the protein kinase os-
cillations yet to be discovered? Here, the answer is that our
reaction-diffusion model results in oscillations that are spa-
tially uniform. Hence, no synchronization mechanisms are
required. This result will not be obvious if diffusion of the
protein kinases were not taken into account. A space-time
plot of a protein kinase oscillation is shown in Fig. 2. The
spatially uniform oscillations take the form of periodic build-
ups from the low-activity state �dark colored� to the high-
activity state �light colored�, followed by an immediate drop
to the low-activity state. In real time, the period of the oscil-
lations is approximately 20 min. The algorithm used to ob-
tain the space-time plot is one where time is discretized us-

ing the forward Euler scheme and space is discretized using
second-order central differencing.

The spatial uniformity arising from our reaction-diffusion
model is to be contrasted with other reaction-diffusion mod-
els, such as the Brusselator �21�, that exhibit spatially peri-
odic oscillatory instabilities. In these models, a necessary
condition for the presence of traveling waves is that the dif-
fusion coefficients of the various reacting species differ by
large orders of magnitude. In our model, we find that chang-
ing the values of the various diffusion coefficients does not
change our results qualitatively. We always arrive at a spa-
tially uniform oscillatory instability.

We can also plot the maximal growth rate �occurring at
q=0� as a function of the negative feedback parameter, �, for
cascade of varying depths, N=2, . . . ,4. This is shown in Fig.
3. We can see from the graph that the maximal growth rate
for N=2 is negative for all values of �, indicating that the
two-layer cascade does not become unstable to an oscillatory
instability. Thus, oscillations do not occur in the protein ki-
nase activities of the two-layer cascade; the cascade must
have a minimum depth of three layers in order for the protein
kinase activities to oscillate. Furthermore, the three-layer
cascade has the smallest range of � for which the oscillatory
instability can occur. Equivalently, the three-layer cascade
admits the smallest range of values for the equilibrium con-
stant of the ERK-Ras allosteric binding in order for ERK to
oscillate. This can be interpreted as saying that the allosteric
inhibition of ERK on Ras is the most specific when the cas-
cade is comprised of three layers.

B. Oscillatory dynamics as a function of cascade kinetics

We now characterize the oscillatory dynamics of the
three-layer cascade as a function of the biochemical kinetics
of the cascade. We will consider the frequency � of the
oscillations, which is given by the maximal value of Im ��q�
over the range of q for which Re ��q��0. In this case, �
	 Im ��q=0�. In Fig. 4, we plot � vs the system parameters
�, �, �, and �.
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FIG. 2. Space-time plot of the terminal protein kinase activity
a3�r , t� in a three-layer cascade. Space runs from r=0 �correspond-
ing to the membrane, say� to r=1 �corresponding to the nucleus,
say�. Time runs from t=0 to t=120. The parameters are set at �
=10, �=0.01, �=100, and �=1.
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FIG. 3. The maximal growth rate, Re ��q=0� vs the negative
feedback parameter � for cascades of N=2,3, and 4 layers. For N
=2, there are no values of � for which the maximal growth rate is
positive.
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First, from the top-left-hand graph of Fig. 4, we see that
��0 only for 1.6
�
32. Recall that � characterizes the
degree of “activity” of the cascade. A value of ��1 corre-
sponds to the cascade being in the “off” state where the
protein kinase activities are near to zero, whereas a value of
��1 corresponds to the cascade being in the “on” state
where the protein kinase activities are near to unity. Thus, we
can say that protein kinase activities exhibit oscillations only
when the cascade is operating in the “on” state. Interestingly,
these oscillations disappear when � increases further, i.e.,
when the protein kinase activities become very close to unity.
This suggests that the traditional view of the cascade being a
biochemical switch, with either none or all of the protein
kinases being active, must be modified. There are now three
possible steady states for the cascade: “off,” oscillatory, and
“on,” depending on the magnitude of �.

Second, from the top-right-hand graph of Fig. 4, we see
that ��0 only for �
0.1. Recalling that a small value of �
denotes the protein kinases being saturated. The protein ki-
nases do not exhibit oscillations if they are not being satu-
rated. Since protein kinase saturation in the cascade leads to
ultrasensitivity �15�, this result suggests that only ultrasensi-
tive cascades can exhibit protein kinase oscillations �23�.

Third, from the bottom-left-hand graph of Fig. 4, we see
that ��0 only for 15
�
2500. Thus, the cascade only
exhibits oscillations when the equilibrium constant of the
ERK-Ras allosteric binding is neither too large or too small.
This range corresponds to the equilibrium constant being be-
tween approximately 0.1 nM and 20 nM.

Finally, from the bottom-right-hand graph of Fig. 4, we
see that � is independent of � for 10−2
�
102. Thus, the
magnitude of the diffusion coefficients of the protein kinases
does not modify the frequency of the oscillations. It is plau-
sible that � may vary with � for values of � outside the
range considered here. However, numerical evaluations of �
are difficult to conduct for these values of �.

C. Stability of oscillatory dynamics against crosstalk

Within a cell, there are many signaling cascades operating
in parallel. There is then the possibility of signaling
crosstalk, i.e., the signaling activities of one cascade modi-
fying the activities of another when both are in operation
simultaneously. While the biochemical details of crosstalk
have not been fully worked out, there have been theoretical
suggestions on how they can be eliminated. For example,
Thattai and van Oudenaarden �24� have shown that fluctua-
tions in the stimulus to a cascade, that could arise from
crosstalk, can be attenuated in ultrasensitive cascades.

In this section, we want to study the crosstalk between
two cascades particularly when both are exhibiting protein
kinase oscillations. We want to see how the oscillations of
the protein kinases residing in one cascade perturb the oscil-
lations of the protein kinases residing in the other. We as-
sume that the first cascade interferes with the second cascade
only via the latter’s stimulus. In other words, the second
cascade’s stimulus now mimics the oscillations of the first
cascade, i.e., we let the stimulus a0 in the reaction-diffusion
model of Eq. �1� be oscillatory,

a0�t� = a0̃ −
�

2
�1 + sin��pt�� , �4�

where a0̃ is the unperturbed magnitude of the stimulus, � is a
parameter that quantifies the magnitude of the crosstalk, and
�p is the frequency of the oscillation of the perturbing cas-

cade. Thus, a0̃−�
a0�t�
a0̃. If we let �n denote the natural
frequency of the unperturbed cascade, then we want to vary
�p over a range, say 0.1
�	�p /�n
10, and see how the
perturbed protein kinase activities behave.

In Fig. 5, we show the perturbed protein kinase activities
for �=0.1 and �=10 when �=0.5. We see that even when
perturbed by an oscillatory stimulus whose frequency is one-
tenth �10� times as small �large� as the natural frequency of
the unperturbed cascade, the protein kinases still maintain
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their oscillations. However, the oscillations are no longer pe-
riodic. In fact, they become quasiperiodic, exhibiting regular
in-phase and out-of-phase behavior when compared against
the unperturbed case. To quantify the effects of this crosstalk,
we compute the total normalized power of the protein kinase
activities, defined by

pi��� =

�
0

�

�ai�t;���2dt

�
0

�

�ai�t;� = 0��2dt

. �5�

Thus, a value of p=1 means that, over time, the perturbed
protein kinase activities still contains the same amount of
total power as the unperturbed protein kinase activities. Con-
sequently, a value of p=1 indicates that the protein kinase
activities are not affected by the crosstalk. In Fig. 6, we plot
the total normalized power for the different protein kinases
for an N=3 cascade as a function of the ratio of perturbed to
unperturbed frequency �. We see that only for i=3 do the
powers remain at approximately unity. This means that only
an N=3 cascade is sufficiently robust against crosstalk.

Finally, it should be pointed out that it is possible for a
cascade that is operating in the nonoscillating range to be
perturbed into exhibiting oscillatory dynamics if the magni-
tude of the crosstalk is sufficiently strong. Thus, care must be
taken to ensure that protein kinase oscillations observed ex-
perimentally are not induced by crosstalk.

IV. CONCLUSIONS

In this paper, we have developed a reaction-diffusion
model for the mitogen-activated protein kinase cascade and
have performed a linear stability analysis on this model.
From this analysis, we have found that only cascades that are
comprised of three or more layers undergo a spatially uni-
form oscillatory instability, resulting in the protein kinase
activities undergoing oscillations. We have also characterized

this oscillation as a function of the biochemical kinetics of
the cascade. Finally, we have shown that the oscillations are
stable against crosstalk, i.e., if the stimulus of the cascade is
perturbed in a periodic manner, the oscillations of the protein
kinases do not vary much.

Recent experiments on rat adrenal pheochromocytoma
�PC-12� cells to address the network topology of the
mitogen-activated protein kinase cascade �4� have been able
to resolve variations in protein kinase concentrations on time
scales of �O�1�–O�10� min. Given that the period of oscil-
lations reported in this paper is approximately 20 min, the
PC-12 cell system may be a suitable system to observe pro-
tein kinase oscillations. However, these experiments may not
be able to observe subcellular variations in protein concen-
trations, and so may not be able to distinguish if the oscilla-
tions are spatially uniform within the cell or not. Neverthe-
less, recent progress in imaging techniques �25,26� that allow
for the measurement of diffusion coefficients of proteins in
the cytosol in vivo may be adapted to probe if proteins in
various locations in the intracellular environment are oscil-
lating in synchrony or not.
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APPENDIX: DERIVATION OF MODEL

We assume that the phosphorylation and dephosphoryla-
tion of the protein kinases are described by two-step enzyme
kinetics �2�. For example, the phosphorylation of the inactive
MAPK �denoted by K� into its active form �denoted by K*� is
modeled as

K + E�
dP

aP

KE ——→
kP

K* + E , �A1�

where KE is an intermediate complex formed from the tem-
porary capture of K by E at a rate aP. This intermediate
complex can then break up in one of two ways: the reversible
release of the unmodified kinase K at a rate dP, or the irre-
versible release of the modified kinase K* at a rate kP. Simi-
larly, the dephosphorylation of K* into K is modeled as a
two-step reaction,

K* + P�
dD

aD

K*P ——→
kD

K + P . �A2�

The Michaelis-Menten law can then be invoked to write
down equations describing the rates of change of the protein
kinases. For example, for Eqs. �A1� and �A2�, the rate of
change of the active kinase K* can be written as the differ-
ence between the rate of phosphorylation and the rate of
dephosphorylation,

d�K*�
dt

=
VP�K�

KP + �K�
−

VD�K*�
KD + �K*�

. �A3�

Here, the square brackets denote species concentrations. The
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FIG. 6. Total normalized power, pi defined in Eq. �5� vs ratio of
perturbed to unperturbed frequency � for i=1,2 ,3.
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various parameters are, namely, the maximum phosphoryla-
tion velocity VP=kP�E�, the maximum dephosphorylation
velocity VD=kD�P�, and the Michaelis constants KP,D

= �dP,D+kP,D� /aP,D.
To model the negative feedback loop, we assume that the

feedback follows the kinetics of allosteric inhibition �20�.
Thus, we can replace the maximum velocity of the phospho-
rylation of the initial protein kinase as follows:

VP →
VP

1 + �I�/KI
, �A4�

where �I� is the concentration of the inhibitor �in this case,
the terminal protein kinase� and KI is an equilibrium constant
of the binding between inhibitor and enzyme.

Finally, rendering these equations dimensionless results in
the model of Eq. �1�.
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